Monitoring Crop Evapotranspiration and Crop Coefficients over an Almond and Pistachio Orchard Throughout Remote Sensing

Author:

Bellvert Joaquim,Adeline Karine,Baram Shahar,Pierce Lars,Sanden Blake,Smart David

Abstract

In California, water is a perennial concern. As competition for water resources increases due to growth in population, California’s tree nut farmers are committed to improving the efficiency of water used for food production. There is an imminent need to have reliable methods that provide information about the temporal and spatial variability of crop water requirements, which allow farmers to make irrigation decisions at field scale. This study focuses on estimating the actual evapotranspiration and crop coefficients of an almond and pistachio orchard located in Central Valley (California) during an entire growing season by combining a simple crop evapotranspiration model with remote sensing data. A dataset of the vegetation index NDVI derived from Landsat-8 was used to facilitate the estimation of the basal crop coefficient (Kcb), or potential crop water use. The soil water evaporation coefficient (Ke) was measured from microlysimeters. The water stress coefficient (Ks) was derived from airborne remotely sensed canopy thermal-based methods, using seasonal regressions between the crop water stress index (CWSI) and stem water potential (Ψstem). These regressions were statistically-significant for both crops, indicating clear seasonal differences in pistachios, but not in almonds. In almonds, the estimated maximum Kcb values ranged between 1.05 to 0.90, while for pistachios, it ranged between 0.89 to 0.80. The model indicated a difference of 97 mm in transpiration over the season between both crops. Soil evaporation accounted for an average of 16% and 13% of the total actual evapotranspiration for almonds and pistachios, respectively. Verification of the model-based daily crop evapotranspiration estimates was done using eddy-covariance and surface renewal data collected in the same orchards, yielding an R2 ≥ 0.7 and average root mean square errors (RMSE) of 0.74 and 0.91 mm·day−1 for almond and pistachio, respectively. It is concluded that the combination of crop evapotranspiration models with remotely-sensed data is helpful for upscaling irrigation information from plant to field scale and thus may be used by farmers for making day-to-day irrigation management decisions.

Funder

California Department of Food and Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3