Global Land Surface Temperature Influenced by Vegetation Cover and PM2.5 from 2001 to 2016

Author:

Song Zengjing,Li Ruihai,Qiu Ruiyang,Liu Siyao,Tan Chao,Li Qiuping,Ge Wei,Han Xujun,Tang Xuguang,Shi Weiyu,Song Lisheng,Yu Wenping,Yang Hong,Ma MingguoORCID

Abstract

Land surface temperature (LST) is an important parameter to evaluate environmental changes. In this paper, time series analysis was conducted to estimate the interannual variations in global LST from 2001 to 2016 based on moderate resolution imaging spectroradiometer (MODIS) LST, and normalized difference vegetation index (NDVI) products and fine particulate matter (PM2.5) data from the Atmospheric Composition Analysis Group. The results showed that LST, seasonally integrated normalized difference vegetation index (SINDVI), and PM2.5 increased by 0.17 K, 0.04, and 1.02 μg/m3 in the period of 2001–2016, respectively. During the past 16 years, LST showed an increasing trend in most areas, with two peaks of 1.58 K and 1.85 K at 72°N and 48°S, respectively. Marked warming also appeared in the Arctic. On the contrary, remarkable decrease in LST occurred in Antarctic. In most parts of the world, LST was affected by the variation in vegetation cover and air pollutant, which can be detected by the satellite. In the Northern Hemisphere, positive relations between SINDVI and LST were found; however, in the Southern Hemisphere, negative correlations were detected. The impact of PM2.5 on LST was more complex. On the whole, LST increased with a small increase in PM2.5 concentrations but decreased with a marked increase in PM2.5. The study provides insights on the complex relationship between vegetation cover, air pollution, and land surface temperature.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference83 articles.

1. Characterizing and attributing the warming trend in sea and land surface temperatures

2. Highlights of the IPCC working group|fifth assessment report;Qin;Clim. Chang. R,2014

3. Evolution of land surface air temperature trend

4. Estimating evapotranspiration using improved fractinal vegetation cover and land surface temperatur space;Sun;J. Resour. Ecol.,2011

5. A New Global Climatology of Annual Land Surface Temperature

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3