Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs

Author:

Navarrete-de Galvez EnriqueORCID,Gago-Calderon AlfonsoORCID,Garcia-Ceballos Luz,Contreras-Lopez Miguel Angel,Andres-Diaz Jose RamonORCID

Abstract

The sensitivity of the human eye varies with the different lighting conditions to which it is exposed. The cone photoreceptors perceive the color and work for illuminance conditions greater than 3.00 cd/m² (photopic vision). Below 0.01 cd/m², the rods are the cells that assume this function (scotopic vision). Both types of photoreceptors work coordinately in the interval between these values (mesopic vision). Each mechanism generates a different spectral sensibility. In this work, the emission spectra of common sources in present public lighting installations are analyzed and their normative photopic values translated to the corresponding mesopic condition, which more faithfully represents the vision mechanism of our eyes in these conditions. Based on a common street urban configuration (ME6), we generated a large set of simulations to determine the ideal light point setup configuration (luminance and light point height vs. poles distance ratio) for each case of spectrum source. Finally, we analyze the derived energy variation from each design possibility. The results obtained may contribute to improving the criterion of light source selection and adapting the required regulatory values to the human eye vision process under normalized artificial street lighting condition, reaching an average energy saving of 15% and a reduction of 8% in terms of points of light required. They also offer a statistical range of energy requirements for lighting installation that can be used to generate accurate electrical designs or estimations without the necessity of defining the exact lighting configuration, which is 77.5% lower than conventional design criteria.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3