Abstract
The sensitivity of the human eye varies with the different lighting conditions to which it is exposed. The cone photoreceptors perceive the color and work for illuminance conditions greater than 3.00 cd/m² (photopic vision). Below 0.01 cd/m², the rods are the cells that assume this function (scotopic vision). Both types of photoreceptors work coordinately in the interval between these values (mesopic vision). Each mechanism generates a different spectral sensibility. In this work, the emission spectra of common sources in present public lighting installations are analyzed and their normative photopic values translated to the corresponding mesopic condition, which more faithfully represents the vision mechanism of our eyes in these conditions. Based on a common street urban configuration (ME6), we generated a large set of simulations to determine the ideal light point setup configuration (luminance and light point height vs. poles distance ratio) for each case of spectrum source. Finally, we analyze the derived energy variation from each design possibility. The results obtained may contribute to improving the criterion of light source selection and adapting the required regulatory values to the human eye vision process under normalized artificial street lighting condition, reaching an average energy saving of 15% and a reduction of 8% in terms of points of light required. They also offer a statistical range of energy requirements for lighting installation that can be used to generate accurate electrical designs or estimations without the necessity of defining the exact lighting configuration, which is 77.5% lower than conventional design criteria.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献