Probabilistic Intraday PV Power Forecast Using Ensembles of Deep Gaussian Mixture Density Networks

Author:

Doelle OliverORCID,Klinkenberg Nico,Amthor Arvid,Ament ChristophORCID

Abstract

There is a growing interest of estimating the inherent uncertainty of photovoltaic (PV) power forecasts with probability forecasting methods to mitigate accompanying risks for system operators. This study aims to advance the field of probabilistic PV power forecast by introducing and extending deep Gaussian mixture density networks (MDNs). Using the sum of the weighted negative log likelihood of multiple Gaussian distributions as a minimizing objective, MDNs can estimate flexible uncertainty distributions with nearly all neural network structures. Thus, the advantages of advances in machine learning, in this case deep neural networks, can be exploited. To account for the epistemic (e.g., model) uncertainty as well, this study applies two ensemble approaches to MDNs. This is particularly relevant for industrial applications, as there is often no extensive (manual) adjustment of the forecast model structure for each site, and only a limited amount of training data are available during commissioning. The results of this study suggest that already seven days of training data are sufficient to generate significant improvements of 23.9% in forecasting quality measured by normalized continuous ranked probability score (NCRPS) compared to the reference case. Furthermore, the use of multiple Gaussian distributions and ensembles increases the forecast quality relatively by up to 20.5% and 19.5%, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference41 articles.

1. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond;Hong;Int. J. Forecast.,2016

2. Bundesnetzagentur (2022). Genehmigung des Szenariorahmens 2023–2037/2045, Bundesnetzagentur. Technical Report.

3. European Commission (2022). EU Solar Energy Strategy, European Commission.

4. Opportunity Cost Bidding by Wind Generators in Forward Markets: Analytical Results;Dent;IEEE Trans. Power Syst.,2011

5. Day-ahead probabilistic PV generation forecast for buildings energy management systems;Tzscheutschler;Sol. Energy,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3