Identification of Karst Cavities from 2D Seismic Wave Impedance Images Based on Gradient-Boosting Decision Trees Algorithms (GBDT): Case of Ordovician Fracture-Vuggy Carbonate Reservoir, Tahe Oilfield, Tarim Basin, China

Author:

Kouassi Allou Koffi Franck,Pan Lin,Wang XiaoORCID,Wang Zhangheng,Mulashani Alvin K.,James Faulo,Shaame Mbarouk,Hussain Altaf,Hussain Hadi,Nyakilla Edwin E.

Abstract

The precise characterization of geological bodies in fracture-vuggy carbonates is challenging due to their high complexity and heterogeneous distribution. This study aims to present the hybrid of Visual Geometry Group 16 (VGG-16) pre-trained by Gradient-Boosting Decision Tree (GBDT) models as a novel approach for predicting and generating karst cavities with high accuracy on various scales based on uncertainty assessment from a small dataset. Seismic wave impedance images were used as input data. Their manual interpretation was used to build GBDT classifiers for Light Gradient-Boosting Machine (LightGBM) and Unbiased Boosting with Categorical Features (CatBoost) for predicting the karst cavities and unconformities. The results show that the LightGBM was the best GBDT classifier, which performed excellently in karst cavity interpretation, giving an F1-score between 0.87 and 0.94 and a micro-G-Mean ranging from 0.92 to 0.96. Furthermore, the LightGBM performed better in cave prediction than Linear Regression (LR) and Multilayer Perceptron (MLP). The prediction of karst cavities according to the LightGBM model was performed well according to the uncertainty quantification. Therefore, the hybrid VGG16 and GBDT algorithms can be implemented as an improved approach for efficiently identifying geological features within similar reservoirs worldwide.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3