Multi-Objective Optimal Long-Term Operation of Cascade Hydropower for Multi-Market Portfolio and Energy Stored at End of Year

Author:

Yu HaojianxiongORCID,Shen JianjianORCID,Cheng Chuntian,Lu Jia,Cai Huaxiang

Abstract

Taking into account both market benefits and power grid demand is one of the main challenges for cascade hydropower stations trading on electricity markets and secluding operation plan. This study develops a multi-objective optimal operation model for the long-term operation of cascade hydropower in different markets. Two objectives were formulated for economics benefits and carryover energy storage. One was to maximize the market utility value based on portfolio theory, for which conditional value at risk (CVaR) was applied to measure the risk of multi-markets. Another was the maximization of energy storage at the end of a year. The model was solved efficiently through a multi-objective particle swarm optimization (MOPSO). Under the framework of the MOPSO, the chaotic mutation search mechanism and elite individual retention mechanism were introduced to diversify and accelerate the non-inferior solution sets. Lastly, a dynamic updating of archives was established to collect the non-inferior solution. The proposed model was implemented on the hydropower plants on the Lancang River, which traded on the Yunnan Electricity Market (YEM). The results demonstrated non-inferior solution sets in wet, normal and dry years. A comparison in solution sets revealed an imbalanced mutual restriction between objectives, such that a 2.65 billion CNY increase in market utility costs a 13.96 billion kWh decrease in energy storage. In addition, the non-inferior solution provided various schemes for actual demands based on other evaluating indexes such as the minimum output, power generation and spillage.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference37 articles.

1. Application of decision trees to the determination of the year-end level of a carryover storage reservoir based on the iterative dichotomizer 3;Zhang;Int. J. Electr. Power Energy Syst.,2015

2. Long-term optimal operation of cascade hydropower stations based on the utility function of the carryover potential energy;Tan;J. Hydrol.,2020

3. Multiobjective optimal operations for an interprovincial hydropower system considering peak-shaving demands;Shen;Renew. Sustain. Energy Rev.,2020

4. The Optimal Operation Method of Multi-reservoir System Under the Cascade Storage Energy Control;Niu;Proc. Chin. Soc. Electr. Eng.,2017

5. A long-term scheduling model for stored energy maximization of Three Gorges cascade hydroelectric stations and its decomposition algorithm;Zeng;Power Syst. Technol.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3