Influence of Dead-Time on the Input Current Ripple of Three-Phase Voltage Source Inverter

Author:

Arrozy JurisORCID,Retianza Darian V.ORCID,Duarte Jorge L.ORCID,Ilhan Caarls EsinORCID,Huisman HenkORCID

Abstract

The DC-link capacitor in power electronic systems is one of the most vulnerable components in terms of reliability. Since a reliable design of the DC-link capacitor depends on an accurate estimation of its current ripple, this paper proposes analytical equations to model the influence of dead-time on the input current ripple of a three-phase voltage source inverter. The effect of dead-time is modeled as a delay in the rising edges of the input current waveform. The proposed analytical equations are derived and then verified by simulations and experiments. The proposed equations generally provide better accuracy in predicting the input current ripple value compared to the benchmark equations. From the simulation and experimental results, the proposed equations are optimized for dead-time values more than 0.7 μs and modulation indices less than or equal to 0.7. Limitations of the proposed equations are also discussed. For small phase displacements and high modulation indices (0.8 to 1), the accuracy decreases because of the influence of AC output current ripple. For small modulation indices (less than 0.2) and a high value of dead-time (2 μs), the accuracy also decreases due to distortion in the phase current waveforms.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3