Voltage Sag Mitigation Effect Considering Failure Probability According to the Types of SFCL

Author:

Shin Joong-WooORCID,Youn Young-Woo,Kim Jin-SeokORCID

Abstract

The development of industrial technology is based on electronic devices that are sensitive to power quality. Thus, the demand for high-quality and reliable power supplies is increasing. Voltage sag results in severe problems in the manufacturing process of power quality-sensitive industrial loads. When a fault occurs in a multi-ground power distribution system, the magnitudes of the fault current and voltage sag in the faulted and nonfaulted feeders become high. Hence, installing a superconducting fault current limiter (SFCL) is an effective method of compensating for fault current limitation and voltage sag. This study evaluates the effects of improving the magnitude, duration, and frequency of the voltage sag according to the type of SFCL used. First, a fault in the power distribution system is analyzed using PSCAD/EMTDC, a power system simulation software, according to the fault current-limiting element (CLE) and the type of SFCL. Second, the expected voltage sag frequency caused by a feeder fault in the power distribution system is assessed. Finally, the voltage sag improvement effect according to the CLE and the type of SFCL are compared. The trigger-type SFCL with a resistor as a CLE has been evaluated and found to be effective in improving voltage sag.

Funder

Osan University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference23 articles.

1. Analysis of Voltage sag severity case study in an industrial circuit;Santiago;IEEE Trans. Ind. Appl.,2016

2. Haque, M.H. (2001, January 10–13). Compensation of distribution system voltage sag by DVR and D-Statcom. Proceedings of the 2001 IEEE Porto Power Tech Proceedings, Porto, Portugal.

3. Modeling and analysis of a flywheel energy storage system for voltage sag correction;Samineni;IEEE Trans. Ind. Appl.,2006

4. Voltage sag compensation with energy optimized dynamic voltage restorer;Vilathgamuwa;IEEE Trans. Power Deliv.,2003

5. Voltage sag distributions caused by power system faults;Heine;IEEE Trans. Power Syst.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3