Re-Evaluation of Oil Bearing for Wells with Long Production Histories in Low Permeability Reservoirs Using Data-Driven Models

Author:

Xue Yongchao,Cao ChongORCID,Jin Qingshuang,Wang Qianyu

Abstract

The re-evaluation of oil-bearing wells enables finding potential oil-bearing areas and estimating the results of well logging. The re-evaluation of oil bearing is one of the key procedures for guiding the development of lower production wells with long-term production histories. However, there are many limitations to traditional oil-bearing assessment due to low resolution and excessive reliance on geological expert experience, which may lead to inaccurate and uncertain predictions. Based on information gain, three data-driven models were established in this paper to re-evaluate the oil bearing of long-term production wells. The results indicated that the RF model performed best with an accuracy of 95.07%, while the prediction capability of the neural network model was the worst, with only 79.8% accuracy. Moreover, an integrated model was explored to improve model accuracy. Compared with the neural network, support vector machine, and random forest models, the accuracy of the fusion model was improved by 20.9%, 8.5%, and 1.4%, which indicated that the integrated model assisted in enhancing the accuracy of oil-bearing prediction. Combined with the long-term production characteristics of oil wells in the actual oil field, the potential target sweet spot was found, providing theoretical guidance for the effective development of lower production wells in the late period of oilfield development.

Funder

Strategic Cooperation Technology Projects of China National Petroleum Corporation

China University of Petroleum, Beijing

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3