Abstract
The re-evaluation of oil-bearing wells enables finding potential oil-bearing areas and estimating the results of well logging. The re-evaluation of oil bearing is one of the key procedures for guiding the development of lower production wells with long-term production histories. However, there are many limitations to traditional oil-bearing assessment due to low resolution and excessive reliance on geological expert experience, which may lead to inaccurate and uncertain predictions. Based on information gain, three data-driven models were established in this paper to re-evaluate the oil bearing of long-term production wells. The results indicated that the RF model performed best with an accuracy of 95.07%, while the prediction capability of the neural network model was the worst, with only 79.8% accuracy. Moreover, an integrated model was explored to improve model accuracy. Compared with the neural network, support vector machine, and random forest models, the accuracy of the fusion model was improved by 20.9%, 8.5%, and 1.4%, which indicated that the integrated model assisted in enhancing the accuracy of oil-bearing prediction. Combined with the long-term production characteristics of oil wells in the actual oil field, the potential target sweet spot was found, providing theoretical guidance for the effective development of lower production wells in the late period of oilfield development.
Funder
Strategic Cooperation Technology Projects of China National Petroleum Corporation
China University of Petroleum, Beijing
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction