Utilizing Locally Available Bioresources for Powering Remote Indigenous Communities: A Framework and Case Study

Author:

Trombley Jeremy B.ORCID,Sangha Kamaljit K.ORCID,Andersen Alan N.ORCID,Thennadil Suresh N.ORCID

Abstract

We establish a framework to examine the feasibility of using local vegetation for bioenergy power systems in small-scale applications and remote settings. The framework has broad application, and we present a specific case here to demonstrate the process. Our case study is the Tiwi Islands in northern Australia, where a large Acacia mangium plantation is a potential source of biofuel feedstock. Two types of technology were considered: 1. Bio-oil from pyrolysis in diesel generators and 2. Direct combustion coupled with a steam turbine. The biomass was characterized and found to have adequate properties for an energy crop, with a lower heating value of about 18 MJ/kg and entire tree ash content of 2%. Measurements from trees that were damaged from wildfires had similar results, showing potential value recovery for a plantation after unplanned fire. In comparison to a petroleum diesel-based generator, the bio-oil system was 12% more expensive. The direct combustion system was found to be the most economical of those explored here, costing as low as 61% of the bio-oil system. Additional social and environmental benefits were identified, including local employment opportunities, improved energy security and reduced greenhouse gas emissions. Our findings of high techno-economic potential of bioenergy systems, especially through direct combustion, are widely applicable to on-demand renewable energy supply in remote communities.

Funder

Charles Darwin University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference70 articles.

1. Remote Access: Context, Challenges, and Obstacles in Rural Electrification;Zomers;IEEE Power Energy Mag.,2014

2. Alternative Pathways for Providing Access to Electricity in Developing Countries;Mainali;Renew. Energy,2013

3. Rural Electrification and Expansion Planning of Off-Grid Microgrids;Khodayar;Electr. J.,2017

4. The Impact of Temperature on Mortality across Different Climate Zones;Longden;Clim. Chang.,2019

5. Power and Water Corporation, Northern Territory (2021, December 07). SETuP Knowledge—Daly River Lessons Learned; NT, Australia 2019, Available online: https://www.powerwater.com.au/__data/assets/pdf_file/0018/32328/SETuP-Knowledge-Sharing-Daly-River-Nauiyu-Lessons-Learned-and-Performance-Report-September-2019-FINAL.pdf.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3