Bus Voltage Violations under Different Solar Radiation Profiles and Load Changes with Optimally Placed and Sized PV Systems

Author:

Yadav Anju,Kishor Nand,Negi Richa

Abstract

This study mainly discusses the implications of solar radiation profiles and changes in load with respect to base load conditions on the PV placement, size, voltage violations, and curtailment cost of PV generation in the network. The PV installation is optimized using yearly solar radiation profiles, low, medium, and high, corresponding to three different locations. The network in the study is represented as a multiphase, with provision for the installation of both single- and three-phase PV systems. For the different load changes in either one of the phases or all three phases, the optimal placement and size of PV inverters are discussed. It is indicated that with load increase in all three phases, for low solar radiation profiles, the placement and size of PVs remain non-uniform, while for medium and high solar radiation, the distribution becomes comparatively uniform throughout the network. However, with a load increase in one of the phases, for low solar radiation, optimal placement compensates with three-phase PV installation, while for medium/high solar, the corresponding load increase phase contributes to greater PV installation. The voltage rise is observed at both load-connected and non-load-connected buses. Such buses in the network are those that form the common junction with the branches connected to another set of buses having optimally placed PVs. The voltage violations are experienced at the feeder end buses with single-phase PV installation, not only in the phase having a connected load but also in one of the other phases.

Funder

Institutional Open Access Program (IOAP): Østfold University College

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference42 articles.

1. State-of-the-Art Techniques and Challenges Ahead for Distributed Generation Planning and Optimization;Keane;IEEE Trans. Power Syst.,2013

2. Optimal distributed generation placement in power distribution networks: Mod-els, methods, and future research;Georgilakis;IEEE Trans. Power Syst.,2013

3. Valdberg, A.J., and Dwyer, M. (2021, March 08). Distribution Resources Plan Rulemaking (R.14-08-013) Locational Net Benefit Analysis Work-ing Group Final Report. Available online: http://drpwg.org/wp-content/uploads/2016/07/R1408013-et-al-SCE-LNBA-Working-Group-Final-Report.pdf.

4. Impact of network regulation on the incentive for dg integration for the dso: Op-portunities for a transition toward a smart grid;Picciariello;IEEE Trans. Smart Grid,2015

5. Effects of distributed pv generation on California’s distribution system, part 1: Engineer-ing simulations;Cohen;Sol. Energy,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3