Determination of the Critical Speed of a Cracked Shaft from Experimental Data

Author:

Muñoz-Abella BelénORCID,Montero Laura,Rubio PatriciaORCID,Rubio LourdesORCID

Abstract

In this work, a procedure to obtain an accurate value of the critical speed of a cracked shaft is presented. The method is based on the transversal displacements of the cracked section when the shaft is rotating at submultiples of the critical speed. The SERR (Strain Energy Ralease Rate) theory and the CCL (Crack Closure Line) approach are used to analyse the proposed methodology for considering the behaviour of the crack. In order to obtain the best information and to define the procedure, the orbits and the frequency spectra at different subcritical rotational speed intervals are analyzed by means of the Fast Fourier Transform. The comparison of the maximum values of the FFT peaks within the intervals allows the subcritical speed to be determined, along with the value of the critical speed. When verified, the proposed procedure is applied to shafts with the same geometry and material and with cracks of increasing depth. The results show that the critical speed diminishes with the severity of the crack, as expected. A comparison is made between the critical speed obtained using the vertical and the horizontal displacements, finding no remarkable differences, meaning that in practical applications only one sensor for one of the displacements (in the vertical or horizontal direction) is needed to determine the critical speed. This is one of the main contributions of the paper, as it means that the orbits of the shaft are not needed. Finally, after this study we can conclude that the best results are achieved when the critical speed is obtained using data displacement in only one direction within the intervals around 12 or 13 of the critical speed.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. Dynamic modeling and simulation of a flexible-rotor ball bearing system;Liu;J. Vib. Control.,2021

2. An identification problem for vibrating cracked beams;Shen;J. Sound Vib.,1991

3. Identification of crack location in vibrating simply supported beams;Narkis;J. Sound Vib.,1994

4. Crack detection from the variation of the eigenfrequencies of a beam on elastic foundation;Hasan;Eng. Fract. Mech.,1995

5. Identification of a crack in a rod based on changes in a pair of natural frequencies;Morassi;J. Sound Vib.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3