Impact of Heat Stress on Blood, Production, and Physiological Indicators in Heat-Tolerant and Heat-Sensitive Dairy Cows

Author:

Chen Xiaoyang12ORCID,Shu Hang3,Sun Fuyu1,Yao Junhu2,Gu Xianhong1ORCID

Affiliation:

1. State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2. College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China

3. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China

Abstract

Heat stress affects production and health in cows severely. Since it is difficult to define heat-tolerant animals, studies of response to heat stress are important for understanding dairy cows’ health and production. However, information on the impact of heat stress on various indicators in heat-tolerant and heat-sensitive cows is sparse. This study aimed to investigate the effects of heat stress (HS) on blood, production, and physiological indicators in heat-tolerant and heat-sensitive cows. A total of 43 dairy cows were used from 9 May to 7 August 2021, under Temperature–Humidity Index (THI) measurements that ranged from 65.9 to 86.7. We identified cows that were tolerant or sensitive to HS based on the slope of the response of physiological and production traits against THI during the HS period by using a clustering method. After HS, serum glucose (Glu), cortisol (COR), 5-hydroxytryptamine (5-HT), and interleukin-6 (IL-6) levels of cows in the heat-tolerant group were lower than in the heat-sensitive group (p < 0.05). With THI as the predictor, the R2 for predicting respiration rate (RR) and body surface temperature (BT) in heat-tolerant cows was 0.15 and 0.16, respectively, whereas the R2 for predicting RR and BT in heat-sensitive cows was 0.19 and 0.18, respectively. There were low to moderate, positive correlations between RR, BT, and MY with THI, with Pearson correlation coefficients ranging from r = 0.11 to 0.4 in the heat-tolerant group, and from r = 0.24 to 0.43 in the heat-sensitive group. There was a low positive correlation between VT and THI, with a Spearman correlation coefficient of r = 0.07 in the heat-sensitive group. The heat-tolerant dairy cows had lower MY losses and had lower MY (p = 0.0007) in mixed models. Heat-tolerant cows with low-stress levels, through upregulating RR rapidly, increased their adaptability to thermal environments. They have better thermoregulation capability; the hypothalamic–pituitary–adrenal (HPA) axis regulated the thermoregulatory in animals by releasing a variety of neurotransmitters and hormones.

Funder

Beijing Dairy Industry Innovation Team Project

Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3