Host–Bacterium Interaction Mechanisms in Staphylococcus aureus Endocarditis: A Systematic Review

Author:

Nappi Francesco1,Avtaar Singh Sanjeet Singh2

Affiliation:

1. Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France

2. Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK

Abstract

Staphylococci sp. are the most commonly associated pathogens in infective endocarditis, especially within high-income nations. This along with the increasing burden of healthcare, aging populations, and the protracted infection courses, contribute to a significant challenge for healthcare systems. A systematic review was conducted using relevant search criteria from PubMed, Ovid’s version of MEDLINE, and EMBASE, and data were tabulated from randomized controlled trials (RCT), observational cohort studies, meta-analysis, and basic research articles. The review was registered with the OSF register of systematic reviews and followed the PRISMA reporting guidelines. Thirty-five studies met the inclusion criteria and were included in the final systematic review. The role of Staphylococcus aureus and its interaction with the protective shield and host protection functions was identified and highlighted in several studies. The interaction between infective endocarditis pathogens, vascular endothelium, and blood constituents was also explored, giving rise to the potential use of antiplatelets as preventative and/or curative agents. Several factors allow Staphylococcus aureus infections to proliferate within the host with numerous promoting and perpetuating agents. The complex interaction with the hosts’ innate immunity also potentiates its virulence. The goal of this study is to attain a better understanding on the molecular pathways involved in infective endocarditis supported by S. aureus and whether therapeutic avenues for the prevention and treatment of IE can be obtained. The use of antibiotic-treated allogeneic tissues have marked antibacterial action, thereby becoming the ideal substitute in native and prosthetic valvular infections. However, the development of effective vaccines against S. aureus still requires in-depth studies.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3