Improving Rice Leaf Shape Using CRISPR/Cas9-Mediated Genome Editing of SRL1 and Characterizing Its Regulatory Network Involved in Leaf Rolling through Transcriptome Analysis

Author:

Han Yue1,Yang Jinlian1,Wu Hu1,Liu Fang1,Qin Baoxiang1,Li Rongbai1

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China

Abstract

Leaf rolling is a crucial agronomic trait to consider in rice (Oryza sativa L.) breeding as it keeps the leaves upright, reducing interleaf shading and improving photosynthetic efficiency. The SEMI-ROLLED LEAF 1 (SRL1) gene plays a key role in regulating leaf rolling, as it encodes a glycosylphosphatidylinositol-anchored protein located on the plasma membrane. In this study, we used CRISPR/Cas9 to target the second and third exons of the SRL1 gene in the indica rice line GXU103, which resulted in the generation of 14 T0 transgenic plants with a double-target mutation rate of 21.4%. After screening 120 T1 generation plants, we identified 26 T-DNA-free homozygous double-target mutation plants. We designated the resulting SRL1 homozygous double-target knockout as srl1-103. This line exhibited defects in leaf development, leaf rolling in the mature upright leaves, and a compact nature of the fully grown plants. Compared with the wild type (WT), the T2 generation of srl1-103 varied in two key aspects: the width of flag leaf (12.6% reduction compared with WT) and the leaf rolling index (48.77% increase compared with WT). In order to gain a deeper understanding of the involvement of SRL1 in the regulatory network associated with rice leaf development, we performed a transcriptome analysis for the T2 generation of srl1-103. A comparison of srl1-103 with WT revealed 459 differentially expressed genes (DEGs), including 388 upregulated genes and 71 downregulated genes. In terms of the function of the DEGs, there seemed to be a significant enrichment of genes associated with cell wall synthesis (LOC_Os08g01670, LOC_Os05g46510, LOC_Os04g51450, LOC_Os10g28080, LOC_Os04g39814, LOC_Os01g71474, LOC_Os01g71350, and LOC_Os11g47600) and vacuole-related genes (LOC_Os09g23300), which may partially explain the increased leaf rolling in srl1-103. Furthermore, the significant downregulation of BAHD acyltransferase-like protein gene (LOC_Os08g44840) could be the main reason for the decreased leaf angle and the compact nature of the mutant plants. In summary, this study successfully elucidated the gene regulatory network in which SRL1 participates, providing theoretical support for targeting this gene in rice breeding programs to promote variety improvement.

Funder

Guangxi Zhuang Autonomous Region Science and Technology Department

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference61 articles.

1. Rice research: Past, present and future;Ma;J. Integr. Plant Biol.,2007

2. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress;Ambavaram;Nat. Commun.,2014

3. Isolation and characterization of rl (t), a gene that controls leaf rolling in rice;Li;Chin. Sci. Bull.,2014

4. Current progress in genetics research and breeding application of rolled leaf in rice;Chen;J. Yangzhou Univ.,2010

5. Super Hybrid Rice Breeding in China: Achievements and Prospects;Cheng;J. Integr. Plant Biol.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3