Genetic Authentication of the Medicinal Plant Portulaca oleracea Using a Quick, Precise, and Sensitive Isothermal DNA Amplification Assay

Author:

Xu Mo-Rong1ORCID,Sun Fang-Chun2,Yang Bo-Cheng1,Chen Hsi-Jien3,Lin Chia-Hsin1ORCID,Cheng Jai-Hong4ORCID,Lee Meng-Shiou1

Affiliation:

1. Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan

2. Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515006, Taiwan

3. Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan

4. Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan

Abstract

Portulaca oleracea (PO) is a commonly known medicinal crop that is an important ingredient for traditional Chinese medicine (TCM) due to its use as a vegetable in the diet. PO has been recorded to be frequently adulterated by other related species in the market of herbal plants, distorting the PO plant identity. Thus, identification of the botanical origin of PO is a crucial step before pharmaceutical or functional food application. In this research, a quick assay named “loop-mediated isothermal amplification (LAMP)” was built for the specific and sensitive authentication of PO DNA. On the basis of the divergences in the internal transcribed spacer 2 (ITS2) sequence between PO and its adulterant species, the LAMP primers were designed and verified their specificity, sensitivity, and application for the PO DNA authentication. The detection limit of the LAMP assay for PO DNA identification specifically was 100 fg under isothermal conditions at 63 °C for 30 min. In addition, different heat-processed PO samples can be applied for use in PO authentication in the LAMP assay. These samples of PO were more susceptible to the effect of steaming in authentication by PCR than boiling and drying treatment. Furthermore, commercial PO samples pursued from herbal markets were used to display their applicability of the developed LAMP analysis for PO postharvest authentication, and the investigation found that approximately 68.4% of PO specimens in the marketplace of herbal remedies were adulterated. In summary, the specific, sensitive, and rapid LAMP assay for PO authentication was first successfully developed herein, and its practical application for the inspection of adulteration in PO samples from the herbal market was shown. This LAMP assay created in this study will be useful to authenticate the botanical origin of PO and its commercial products.

Funder

Ministry of Science and Technology

China Medical University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3