Environmental Air Pollutants Affecting Skin Functions with Systemic Implications

Author:

Bocheva Georgeta1ORCID,Slominski Radomir M.2,Slominski Andrzej T.34ORCID

Affiliation:

1. Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria

2. Department of Genetics, Informatics Institute in the School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA

3. Department of Dermatology, Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA

4. Veteran Administration Medical Center, Birmingham, AL 35294, USA

Abstract

The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR). Therefore, such UVR exposure would enhance their deleterious effects on the skin. Air pollution also affects vitamin D synthesis by reducing UVB radiation, which is essential for the production of vitamin D3, tachysterol, and lumisterol derivatives. Ambient air pollutants, photopollution, blue-light pollution, and cigarette smoke compromise cutaneous structural integrity, can interact with human skin microbiota, and trigger or exacerbate a range of skin diseases through various mechanisms. Generally, air pollution elicits an oxidative stress response on the skin that can activate the inflammatory responses. The aryl hydrocarbon receptor (AhR) can act as a sensor for small molecules such as air pollutants and plays a crucial role in responses to (photo)pollution. On the other hand, targeting AhR/Nrf2 is emerging as a novel treatment option for air pollutants that induce or exacerbate inflammatory skin diseases. Therefore, AhR with downstream regulatory pathways would represent a crucial signaling system regulating the skin phenotype in a Yin and Yang fashion defined by the chemical nature of the activating factor and the cellular and tissue context.

Funder

National Institutes of Health

Veteran Administration

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3