ClNAC100 Is a NAC Transcription Factor of Chinese Fir in Response to Phosphate Starvation

Author:

Zhao Yuxuan12,Huang Shuotian12,Wei Lihui12,Li Meng12,Cai Tingting12,Ma Xiangqing12,Shuai Peng12ORCID

Affiliation:

1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China

Abstract

Phosphate (Pi) deficiency is one of the most limiting factors for Chinese fir growth and production. Moreover, continuous cultivation of Chinese fir for multiple generations led to the reduction of soil nutrients, which hindered the yield of Chinese fir in southern China. Although NAC (NAM, ATAF, and CUC) transcription factors (TFs) play critical roles in plant development and abiotic stress resistance, it is still unclear how they regulate the response of Chinese fir to phosphate (Pi) starvation. Based on Pi-deficient transcriptome data of Chinses fir root, we identified a NAC transcription factor with increased expression under Pi deficiency, which was obtained by PCR and named ClNAC100. RT-qPCR confirmed that the expression of ClNAC100 in the root of Chinese fir was induced by phosphate deficiency and showed a dynamic change with time. It was positively regulated by ABA and negatively regulated by JA, and ClNAC100 was highly expressed in the roots and leaves of Chinese fir. Transcriptional activation assay confirmed that ClNAC100 was a transcriptional activator. The promoter of ClNAC100 was obtained by genome walking, which was predicted to contain a large number of stress, hormone, and growth-related cis-elements. Tobacco infection was used to verify the activity of the promoter, and the core promoter was located between −1519 bp and −589 bp. We identified 18 proteins bound to the ClNAC100 promoter and 5 ClNAC100 interacting proteins by yeast one-hybrid and yeast two-hybrid, respectively. We speculated that AHL and TIFY family transcription factors, calmodulin, and E3 ubiquitin ligase in these proteins might be important phosphorus-related proteins. These results provide a basis for the further study of the regulatory mechanism and pathways of ClNAC100 under Pi starvation.

Funder

National Natural Science Foundation of China

Fujian Agriculture and Forestry University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3