Genome-Wide Analysis of the MADS-box Gene Family and Expression Analysis during Anther Development in Salvia miltiorrhiza

Author:

Chai Songyue12,Li Kexin12,Deng Xuexue12,Wang Long12,Jiang Yuanyuan12,Liao Jinqiu13ORCID,Yang Ruiwu13ORCID,Zhang Li12

Affiliation:

1. Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China

2. College of Science, Sichuan Agricultural University, Ya’an 625014, China

3. College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China

Abstract

MADS-box genes constitute a large family of transcription factors that play important roles in plant growth and development. However, our understanding of MADS-box genes involved in anther development and male sterility in Salvia miltiorrhiza is still limited. In this study, 63 MADS-box genes were identified from the genome of the male sterility ecotype Sichuan S. miltiorrhiza (S. miltiorrhiza_SC) unevenly distributed among eight chromosomes. Phylogenetic analysis classified them into two types and 17 subfamilies. They contained 1 to 12 exons and 10 conserved motifs. Evolution analysis showed that segmental duplication was the main force for the expansion of the SmMADS gene family, and duplication gene pairs were under purifying selection. Cis-acting elements analysis demonstrated that the promoter of SmMADS genes contain numerous elements associated with plant growth and development, plant hormones, and stress response. RNA-seq showed that the expression levels of B-class and C-class SmMADS genes were highly expressed during anther development, with SmMADS11 likely playing an important role in regulating anther development and male fertility in S. miltiorrhiza_SC. Overall, this study provides a comprehensive analysis of the MADS-box gene family in S. miltiorrhiza, shedding light on their potential role in anther development and male sterility.

Funder

National Modern Agricultural Industry Technology System Sichuan Innovation Team

Sichuan Science and Technology Program

Sichuan Crops and Animals Breeding Special Project

Featured Medicinal Plants Sharing and Service Platform of Sichuan Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3