A Novel Strategy for Screening Tumor-Specific Variable Domain of Heavy-Chain Antibodies

Author:

Rafique Abdur1,Hichiwa Genki2ORCID,Jatnika Muhammad Feisal1,Ito Yuji1ORCID

Affiliation:

1. Graduate School of Science and Engineering, University of Kagoshima, Kagoshima 890-0065, Japan

2. Graduate School of Medical Sciences, Tottori University, Tottori 680-8550, Japan

Abstract

The properties of the variable domain of heavy-chain (VHH) antibodies are particularly relevant in cancer therapy. To isolate tumor cell-specific VHH antibodies, VHH phage libraries were constructed from multiple tumor cells. After enriching the libraries against particular tumor cell lines, a next-generation sequencer was used to screen the pooled phages of each library for potential antibody candidates. Based on high amplification folds, 50 sequences from each library were used to construct phylogenetic trees. Several clusters with identical CDR3 were observed. Groups X, Y, and Z were assigned as common sequences among the different trees. These identical groups over the trees were considered to be cross-reactive antibodies. To obtain monoclonal antibodies, we assembled 200 sequences (top 50 sequences from each library) and rebuilt a combined molecular phylogenetic tree. Groups were categorized as A–G. For each group, we constructed a phagemid and determined its binding specificity with tumor cells. The phage-binding results were consistent with the phylogenetic tree-generated groups, which indicated particular tumor-specific clusters; identical groups showed cross-reactivity. The strategy used in the current study is effective for screening and isolating monoclonal antibodies. Specific antibodies can be identified, even when the target markers of cancer cells are unknown.

Funder

Basic Science and Platform Technology Program for Innovative Biological medicine

Science and Technology Platform Program for Advanced Biological medicine

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3