Genome-Wide Identification and Functional Analysis of the TIFY Family Genes in Response to Abiotic Stresses and Hormone Treatments in Tartary Buckwheat (Fagopyrum tataricum)

Author:

Zhao Zhixing1,Meng Guanghua2ORCID,Zamin Imran1,Wei Tao1,Ma Dongdi1,An Lizhe13,Yue Xiule1ORCID

Affiliation:

1. Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China

2. School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China

3. The College of Forestry, Beijing Forestry University, Beijing 100000, China

Abstract

TIFY is a plant-specific gene family with four subfamilies: ZML, TIFY, PPD, and JAZ. Recently, this family was found to have regulatory functions in hormone stimulation, environmental response, and development. However, little is known about the roles of the TIFY family in Tartary buckwheat (Fagopyrum tataricum), a significant crop for both food and medicine. In this study, 18 TIFY family genes (FtTIFYs) in Tartary buckwheat were identified. The characteristics, motif compositions, and evolutionary relationships of the TIFY proteins, as well as the gene structures, cis-acting elements, and synteny of the TIFY genes, are discussed in detail. Moreover, we found that most FtTIFYs responded to various abiotic stresses (cold, heat, salt, or drought) and hormone treatments (ABA, MeJA, or SA). Through yeast two-hybrid assays, we revealed that two FtTIFYs, FtTIFY1 and FtJAZ7, interacted with FtABI5, a homolog protein of AtABI5 involved in ABA-mediated germination and stress responses, implying crosstalk between ABA and JA signaling in Tartary buckwheat. Furthermore, the overexpression of FtJAZ10 and FtJAZ12 enhanced the heat stress tolerance of tobacco. Consequently, our study suggests that the FtTIFY family plays important roles in responses to abiotic stress and provides two candidate genes (FtJAZ10 and FtJAZ12) for the cultivation of stress-resistant crops.

Funder

Key Program National Natural Science Foundation of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3