Separation of Palladium from Alkaline Cyanide Solutions through Microemulsion Extraction Using Imidazolium Ionic Liquids

Author:

Deng Hui1,Liu Chali1,Xu Xin1,Wu Yuanyuan1,Chen Muhan1,Huang Zhangjie1

Affiliation:

1. School of Chemical Science and Technology, Yunnan University, Kunming 650091, China

Abstract

In this paper, three imidazolium-based ionic liquids, viz., 1-butyl-3-undecyl imidazolium bromide ([BUIm]Br), 1-butyl-3-octyl imidazolium bromide ([BOIm]Br), and 1-butyl-3-hexadecyl imidazolium bromide ([BCIm]Br), were synthesized. Three novel microemulsions systems were constructed and then were used to recover Pd (II) from cyanide media. Key extraction parameters such as the concentration of ionic liquids (ILs), equilibration time, phase ratio (RA/O), and pH were evaluated. The [BUIm]Br/n-heptane/n-pentanol/sodium chloride microemulsion system exhibited a higher extraction percentage of Pd (II) than the [BOIm]Br/n-heptane/n-pentanol/sodium chloride and [BCIm]Br/n-heptane/n-pentanol/sodium chloride microemulsion systems. Under the optimal conditions (equilibrium time of 10 min and pH 10), the extraction percentages of these metals were all higher than 98.5% when using the [BUIm]Br/n-heptane/n-pentanol/sodium chloride microemulsion system. Pd(CN)42− was separated through a two-step stripping procedure, in which Fe (III) and Co (III) were first separated using KCl solution, then Pd(CN)42− was stripped using KSCN solution (separation factors of Pd from Fe and Co exceeded 103). After five extraction–recovery experiments, the recovery of Pd (II) through the microemulsion system remained over 90%. The Pd (II) extraction mechanism of the ionic liquid [BUIm]Br was determined to occur via anion exchange, as shown by spectral analysis (UV, FTIR), Job’s method, and DFT calculations. The proposed process has potential applications for the comprehensive treatment of cyanide metallurgical wastewater.

Funder

Free exploration fund for academician

Workstation of Academician Chen Jing of Yunnan Province

National Natural Science Foundation of China

Research Innovation Fund for Graduate Students of School of Chemical Science and Technology, Yunnan University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3