Augmented Degradation of Factors VIII and IX in the Intermittent Movement State

Author:

Cohen Haim12,Keren-Politansky Anat12,Crispel Yonatan12,Yanovich Chen12,Asayag Keren12,Nadir Yona12

Affiliation:

1. Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus, Haifa P.O. Box 9602, Israel

2. The Rappaport Faculty of Medicine, Technion, Haifa P.O. Box 9602, Israel

Abstract

The most common clinical presentation of hemophilia A and hemophilia B is bleeding in large joints and striated muscles. It is unclear why bleeding has a predilection to affect joints and muscles. As muscles and joints are involved in intermittent movement, we explored whether this phenomenon could be associated with an impact on factor VIII and IX levels. Purified proteins and a mouse model were assessed using coagulation assays, Western blot analysis and immuno-staining. Movement caused an increase in thrombin activity and a decrease in factor VIII and factor IX activity. The decrease in factor VIII activity was more significant in the presence of thrombin and during movement. Under movement condition, sodium ions appeared to enhance the activity of thrombin that resulted in decreased factor VIII activity. Unlike factor VIII, the reduction in factor IX levels in the movement condition was thrombin-independent. High factor VIII levels were found to protect factor IX from degradation and vice versa. In mice that were in movement, factor VIII and IX levels decreased in the microcirculation of the muscle tissue compared with other tissues and to the muscle tissue at rest. Movement had no effect on von Willebrand factor levels. Movement induces reduction in factor VIII and IX levels. It enables an increase in the binding of sodium ions to thrombin leading to enhanced thrombin activity and augmented degradation of factor VIII. These data suggest a potential mechanism underlying the tendency of hemophilia patients to bleed in muscles and joints.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3