SlTDC1 Overexpression Promoted Photosynthesis in Tomato under Chilling Stress by Improving CO2 Assimilation and Alleviating Photoinhibition

Author:

Liu Xutao1,Wang Yanan1,Feng Yiqing1,Zhang Xiaowei1,Bi Huangai1,Ai Xizhen1

Affiliation:

1. State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China

Abstract

Chilling causes a significant decline in photosynthesis in tomato plants. Tomato tryptophan decarboxylase gene 1 (SlTDC1) is the first rate-limiting gene for melatonin (MT) biosynthesis and is involved in the regulation of photosynthesis under various abiotic stresses. However, it is not clear whether SlTDC1 participates in the photosynthesis of tomato under chilling stress. Here, we obtained SlTDC1 overexpression transgenic tomato seedlings, which showed higher SlTDC1 mRNA abundance and MT content compared with the wild type (WT). The results showed that the overexpression of SlTDC1 obviously alleviated the chilling damage to seedlings in terms of the lower electrolyte leakage rate and hydrogen peroxide content, compared with the WT after 2 d of chilling stress. Moreover, the overexpression of SlTDC1 notably increased photosynthesis under chilling stress, which was related to the higher chlorophyll content, normal chloroplast structure, and higher mRNA abundance and protein level of Rubisco and RCA, as well as the higher carbon metabolic capacity, compared to the WT. In addition, we found that SlTDC1-overexpressing seedlings showed higher Wk (damage degree of OEC on the PSII donor side), φEo (quantum yield for electron transport in the PSII reaction center), and PIABS (photosynthetic performance index) than WT seedlings after low-temperature stress, implying that the overexpression of SlTDC1 decreased the damage to the reaction center and donor-side and receptor-side electron transport of PSII and promoted PSI activity, as well as energy absorption and distribution, to relieve the photoinhibition induced by chilling stress. Our results support the notion that SlTDC1 plays a vital role in the regulation of photosynthesis under chilling stress.

Funder

the National Key Research and Development Program of China

the Major Science and Technology Innovation of Shandong Province in China

the Special Fund of Modern Agriculture Industrial Technology System of Shandong Province in China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3