Design, Synthesis, and Biological Evaluation of Novel Quinazolin-4(3H)-one-Based Histone Deacetylase 6 (HDAC6) Inhibitors for Anticancer Activity

Author:

Khetmalis Yogesh Mahadu1,Fathima Ashna2ORCID,Schweipert Markus3,Debarnot Cécile3,Bandaru Naga Venkata Madhusudhan Rao1,Murugesan Sankaranarayanan4,Jamma Trinath2,Meyer-Almes Franz-Josef3ORCID,Sekhar Kondapalli Venkata Gowri Chandra1

Affiliation:

1. Department of Chemistry, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India

2. Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India

3. Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany

4. Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India

Abstract

A series of novel quinazoline-4-(3H)-one derivatives were designed and synthesized as histone deacetylase 6 (HDAC6) inhibitors based on novel quinazoline-4-(3H)-one as the cap group and benzhydroxamic acid as the linker and metal-binding group. A total of 19 novel quinazoline-4-(3H)-one analogues (5a–5s) were obtained. The structures of the target compounds were characterized using 1H-NMR, 13C-NMR, LC–MS, and elemental analyses. Characterized compounds were screened for inhibition against HDAC8 class I, HDAC4 class IIa, and HDAC6 class IIb. Among the compounds tested, 5b proved to be the most potent and selective inhibitor of HDAC6 with an IC50 value 150 nM. Some of these compounds showed potent antiproliferative activity in several tumor cell lines (HCT116, MCF7, and B16). Amongst all the compounds tested for their anticancer effect against cancer cell lines, 5c emerged to be most active against the MCF-7 line with an IC50 of 13.7 μM; it exhibited cell-cycle arrest in the G2 phase, as well as promoted apoptosis. Additionally, we noted a significant reduction in the colony-forming capability of cancer cells in the presence of 5c. At the intracellular level, selective inhibition of HDAC6 was enumerated by monitoring the acetylation of a-tubulin with a limited effect on acetyl-H3. Importantly, the obtained results suggested a potent effect of 5c at sub-micromolar concentrations as compared to the other molecules as HDAC6 inhibitors in vitro.

Funder

State of Hesse

Council of Scientific and Industrial Research

Birla Institute of Technology and Science, Pilani

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3