A Million-Cow Genome-Wide Association Study of Three Fertility Traits in U.S. Holstein Cows

Author:

Liang Zuoxiang1ORCID,Prakapenka Dzianis1ORCID,VanRaden Paul M.2ORCID,Jiang Jicai3ORCID,Ma Li4ORCID,Da Yang1

Affiliation:

1. Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA

2. Animal Genomics and Improvement Laboratory, Agricultureal Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA

3. Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA

4. Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA

Abstract

A genome-wide association study (GWAS) of the daughter pregnancy rate (DPR), cow conception rate (CCR), and heifer conception rate (HCR) using 1,001,374–1,194,736 first-lactation Holstein cows and 75,140–75,295 SNPs identified 7567, 3798, and 726 additive effects, as well as 22, 27, and 25 dominance effects for DPR, CCR, and HCR, respectively, with log10(1/p) > 8. Most of these effects were new effects, and some new effects were in or near genes known to affect reproduction including GNRHR, SHBG, and ESR1, and a gene cluster of pregnancy-associated glycoproteins. The confirmed effects included those in or near the SLC4A4-GC-NPFFR2 and AFF1 regions of Chr06 and the KALRN region of Chr01. Eleven SNPs in the CEBPG-PEPD-CHST8 region of Chr18, the AFF1-KLHL8 region of Chr06, and the CCDC14-KALRN region of Chr01 with sharply negative allelic effects and dominance values for the recessive homozygous genotypes were recommended for heifer culling. Two SNPs in and near the AGMO region of Chr04 that were sharply negative for HCR and age at first calving, but slightly positive for the yield traits could also be considered for heifer culling. The results from this study provided new evidence and understanding about the genetic variants and genome regions affecting the three fertility traits in U.S. Holstein cows.

Funder

National Institutes of Health’s National Human Genome Research Institute

USDA National Institute of Food and Agriculture

Agricultural Experiment Station at the University of Minnesota

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3