Ca2+ Dynamics of Gap Junction Coupled and Uncoupled Deiters’ Cells in the Organ of Corti in Hearing BALB/c Mice

Author:

Moysan Louise1ORCID,Fazekas Fruzsina1,Fekete Adam2,Köles László34,Zelles Tibor345ORCID,Berekméri Eszter14

Affiliation:

1. Department of Zoology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary

2. Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada

3. Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary

4. Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary

5. Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary

Abstract

ATP, as a paracrine signalling molecule, induces intracellular Ca2+ elevation via the activation of purinergic receptors on the surface of glia-like cochlear supporting cells. These cells, including the Deiters’ cells (DCs), are also coupled by gap junctions that allow the propagation of intercellular Ca2+ waves via diffusion of Ca2+ mobilising second messenger IP3 between neighbouring cells. We have compared the ATP-evoked Ca2+ transients and the effect of two different gap junction (GJ) blockers (octanol and carbenoxolone, CBX) on the Ca2+ transients in DCs located in the apical and middle turns of the hemicochlea preparation of BALB/c mice (P14–19). Octanol had no effect on Ca2+ signalling, while CBX inhibited the ATP response, more prominently in the middle turn. Based on astrocyte models and using our experimental results, we successfully simulated the Ca2+ dynamics in DCs in different cochlear regions. The mathematical model reliably described the Ca2+ transients in the DCs and suggested that the tonotopical differences could originate from differences in purinoceptor and Ca2+ pump expressions and in IP3–Ca2+ release mechanisms. The cochlear turn-dependent effect of CBX might be the result of the differing connexin isoform composition of GJs along the tonotopic axis. The contribution of IP3-mediated Ca2+ signalling inhibition by CBX cannot be excluded.

Funder

research fund of the National Research, Development and Innovation Office of Hungary

Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund

University of Veterinary Medicine Budapest’s support of Young Researchers 2023

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3