Ambiguous Contribution of Glucocorticosteroids to Acute Neuroinflammation in the Hippocampus of Rat

Author:

Tret’yakova Liya V.1ORCID,Kvichansky Alexey A.1ORCID,Barkovskaya Ekaterina S.1,Manolova Anna O.1ORCID,Bolshakov Alexey P.1,Gulyaeva Natalia V.12ORCID

Affiliation:

1. Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia

2. Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia

Abstract

Effects of modulation of glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) on acute neuroinflammatory response were studied in the dorsal (DH) and ventral (VH) parts of the hippocampus of male Wistar rats. Local neuroinflammatory response was induced by administration of bacterial lipopolysaccharide (LPS) to the DH. The modulation of GR and MR was performed by dexamethasone (GR activation), mifepristone, and spironolactone (GR and MR inhibition, respectively). Experimental drugs were delivered to the dentate gyrus of the DH bilaterally by stereotaxic injections. Dexamethasone, mifepristone, and spironolactone were administered either alone (basal conditions) or in combination with LPS (neuroinflammatory conditions). Changes in expression levels of neuroinflammation-related genes and morphology of microglia 3 days after intrahippocampal administration of above substances were assessed. Dexamethasone alone induced a weak proinflammatory response in the hippocampal tissue, while neither mifepristone nor spironolactone showed significant effects. During LPS-induced neuroinflammation, GR activation suppressed expression of selected inflammatory genes, though it did not prevent appearance of activated forms of microglia. In contrast to GR activation, GR or MR inhibition had virtually no influence on LPS-induced inflammatory response. The results suggest glucocorticosteroids ambiguously modulate specific aspects of neuroinflammatory response in the hippocampus of rats at molecular and cellular levels.

Funder

RFBR

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3