Transcriptome-Wide Identification of the GRAS Transcription Factor Family in Pinus massoniana and Its Role in Regulating Development and Stress Response

Author:

Yang Ye1,Agassin Romaric Hippolyte1ORCID,Ji Kongshu1ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Pinus massoniana is a species used in afforestation and has high economic, ecological, and therapeutic significance. P. massoniana experiences a variety of biotic and abiotic stresses, and thus presents a suitable model for studying how woody plants respond to such stress. Numerous families of transcription factors are involved in the research of stress resistance, with the GRAS family playing a significant role in plant development and stress response. Though GRASs have been well explored in various plant species, much research remains to be undertaken on the GRAS family in P. massoniana. In this study, 21 PmGRASs were identified in the P. massoniana transcriptome. P. massoniana and Arabidopsis thaliana phylogenetic analyses revealed that the PmGRAS family can be separated into nine subfamilies. The results of qRT-PCR and transcriptome analyses under various stress and hormone treatments reveal that PmGRASs, particularly PmGRAS9, PmGRAS10 and PmGRAS17, may be crucial for stress resistance. The majority of PmGRASs were significantly expressed in needles and may function at multiple locales and developmental stages, according to tissue-specific expression analyses. Furthermore, the DELLA subfamily members PmGRAS9 and PmGRAS17 were nuclear localization proteins, while PmGRAS9 demonstrated transcriptional activation activity in yeast. The results of this study will help explore the relevant factors regulating the development of P. massoniana, improve stress resistance and lay the foundation for further identification of the biological functions of PmGRASs.

Funder

National Key R&D Program of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3