Quantum Entanglement and State-Transference in Fenna–Matthews–Olson Complexes: A Post-Experimental Simulation Analysis in the Computational Biology Domain

Author:

Delgado Francisco1ORCID,Enríquez Marco2ORCID

Affiliation:

1. School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan 52926, Mexico

2. School of Engineering and Sciences, Tecnologico de Monterrey, Santa Fe 01389, Mexico

Abstract

Fenna-Mathews-Olson complexes participate in the photosynthetic process of Sulfur Green Bacteria. These biological subsystems exhibit quantum features which possibly are responsible for their high efficiency; the latter may comprise multipartite entanglement and the apparent tunnelling of the initial quantum state. At first, to study these aspects, a multidisciplinary approach including experimental biology, spectroscopy, physics, and math modelling is required. Then, a global computer modelling analysis is achieved in the computational biology domain. The current work implements the Hierarchical Equations of Motion to numerically solve the open quantum system problem regarding this complex. The time-evolved states obtained with this method are then analysed under several measures of entanglement, some of them already proposed in the literature. However, for the first time, the maximum overlap with respect to the closest separable state is employed. This authentic multipartite entanglement measure provides information on the correlations, not only based on the system bipartitions as in the usual analysis. Our study has led us to note a different view of FMO multipartite entanglement as tiny contributions to the global entanglement suggested by other more basic measurements. Additionally, in another related trend, the initial state, considered as a Förster Resonance Energy Transfer, is tracked using a novel approach, considering how it could be followed under the fidelity measure on all possible permutations of the FMO subsystems through its dynamical evolution by observing the tunnelling in the most probable locations. Both analyses demanded significant computational work, making for a clear example of the complexity required in computational biology.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3