An E280K Missense Variant in KCND3/Kv4.3—Case Report and Functional Characterization

Author:

Ågren Richard1,Geerdink Niels2,Brunner Han G.34,Paucar Martin56,Kamsteeg Erik-Jan7,Sahlholm Kristoffer18ORCID

Affiliation:

1. Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden

2. Department of Pediatrics, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands

3. Department of Human Genetics, Donders Centre for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands

4. Department of Clinical Genetics, MUMC Maastricht, GROW School for Oncology and Developmental Biology, MHENS School for Mental Health and Neuroscience, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands

5. Department of Neurology, Karolinska University Hospital, 141 86 Stockholm, Sweden

6. Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden

7. Department of Human Genetics, Radboud UMC, 6525 GA Nijmegen, The Netherlands

8. Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden

Abstract

A five-year-old girl presented with headache attacks, clumsiness, and a history of transient gait disturbances. She and her father, mother, twin sister, and brother underwent neurological evaluation, neuroimaging, and exome sequencing covering 357 genes associated with movement disorders. Sequencing revealed the new variant KCND3 c.838G>A, p.E280K in the father and sisters, but not in the mother and brother. KCND3 encodes voltage-gated potassium channel D3 (Kv4.3) and mutations have been associated with spinocerebellar ataxia type 19/22 (SCA19/22) and cardiac arrhythmias. SCA19/22 is characterized by ataxia, Parkinsonism, peripheral neuropathy, and sometimes, intellectual disability. Neuroimaging, EEG, and ECG were unremarkable. Mild developmental delay with impaired fluid reasoning was observed in both sisters, but not in the brother. None of the family members demonstrated ataxia or parkinsonism. In Xenopus oocyte electrophysiology experiments, E280K was associated with a rightward shift in the Kv4.3 voltage-activation relationship of 11 mV for WT/E280K and +17 mV for E280K/E280K relative to WT/WT. Steady-state inactivation was similarly right-shifted. Maximal peak current amplitudes were similar for WT/WT, WT/E280K, and E280K/E280K. Our data indicate that Kv4.3 E280K affects channel activation and inactivation and is associated with developmental delay. However, E280K appears to be relatively benign considering it does not result in overt ataxia.

Funder

Swedish Brain Foundation

Region Stockholm

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3