Binary Horse Optimization Algorithm for Feature Selection

Author:

Moldovan DorinORCID

Abstract

The bio-inspired research field has evolved greatly in the last few years due to the large number of novel proposed algorithms and their applications. The sources of inspiration for these novel bio-inspired algorithms are various, ranging from the behavior of groups of animals to the properties of various plants. One problem is the lack of one bio-inspired algorithm which can produce the best global solution for all types of optimization problems. The presented solution considers the proposal of a novel approach for feature selection in classification problems, which is based on a binary version of a novel bio-inspired algorithm. The principal contributions of this article are: (1) the presentation of the main steps of the original Horse Optimization Algorithm (HOA), (2) the adaptation of the HOA to a binary version called the Binary Horse Optimization Algorithm (BHOA), (3) the application of the BHOA in feature selection using nine state-of-the-art datasets from the UCI machine learning repository and the classifiers Random Forest (RF), Support Vector Machines (SVM), Gradient Boosted Trees (GBT), Logistic Regression (LR), K-Nearest Neighbors (K-NN), and Naïve Bayes (NB), and (4) the comparison of the results with the ones obtained using the Binary Grey Wolf Optimizer (BGWO), Binary Particle Swarm Optimization (BPSO), and Binary Crow Search Algorithm (BCSA). The experiments show that the BHOA is effective and robust, as it returned the best mean accuracy value and the best accuracy value for four and seven datasets, respectively, compared to BGWO, BPSO, and BCSA, which returned the best mean accuracy value for four, two, and two datasets, respectively, and the best accuracy value for eight, seven, and five datasets, respectively.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3