Affiliation:
1. Department of Material Engineering, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic
Abstract
The Joule heating behavior of carbon-based materials obtained by the process of carbonization of industrial para-aramid fabric wastes are investigated in the present work. Carbonization involves a process of thermally decomposing organic material, thereby altering its physical and chemical properties to obtain carbon-rich materials that are electrically conductive and display Joule heating behavior. The principle of Joule heating is based on the intrinsic electrical resistance of the material across an applied voltage. Here, para-aramid woven fabric wastes are converted into activated carbon materials through straightforward, controlled, single-step thermal treatments by three different kinds of atmosphere, i.e., in the CO2 evolved from charcoal, a mixture of gases from ammonium bicarbonate salt (NH4HCO3), and Nitrogen gas (N2), respectively, inside a high-temperature furnace. The carbonization temperatures were varied from 800 to 1100 °C. The carbonization process variables were optimized to obtain carbon-rich materials with lower electrical resistivity. The results of electrical resistivity measurements show that for all three methods, the electrical resistivity decreases with increasing carbonization temperatures. An experimental setup consisting of an infrared (IR) camera, positioned over the surface of the fabric specimen to record the surface temperature of the material connected to a DC power supply, was employed. The kinetics of Joule heating and subsequent cooling were also analyzed at a fixed voltage of 5 V by recording the changes in surface temperature with respect to time. The heating–cooling cycle is described by a simple kinetic model of first order.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献