Analysis of the Impact of Invisible Road Icing on Selected Parameters of a Minibus Vehicle

Author:

Kurczyński Dariusz,Zuska AndrzejORCID

Abstract

The measurement of acceleration during vehicle motion can be used to assess the driving styles and behaviours of drivers, to control vehicle traffic, to detect uncontrolled vehicle behaviour, and to prevent accidents. The measurement of acceleration during vehicle motion on an icy road can be used to warn the driver about changing conditions and the related hazards. This paper presents the results of testing the motion parameters of a Ford Transit adapted for passenger transport in critical traffic conditions. It can contribute to the improvement of road safety. Critical traffic conditions are deemed in the paper as sudden braking, rapid acceleration, and circular vehicle motion at maximum speed maintainable in the given conditions. The vehicle’s acceleration and speed were measured during the tests. The tests were carried out with a TAA linear acceleration sensor and a Correvit S-350 Aqua optoelectronic sensor. The same test runs were conducted on a dry surface, a wet (after rain) surface and a surface covered with a thin, invisible ice layer. The objective of the tests was to determine the impact of invisible road icing, the so-called black ice, on the tested vehicle’s braking, acceleration, and circular motion. It was demonstrated that a virtually invisible ice layer covering the road surface has a substantial impact on the tested vehicle’s motion parameters, thereby affecting traffic safety. It substantially extends the braking and acceleration distances and requires the driver to reduce the vehicle’s speed when performing circular motions. A clear wet surface, representing motion after rain, did not substantially affect the analysed parameters. The obtained results can be used in traffic simulations and to analyse the causes of accidents.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3