Comparison of Volunteers’ Head Displacement with Computer Simulation—Crash Test with Low Speed of 20 km/h

Author:

Frej DamianORCID,Jaśkiewicz MarekORCID

Abstract

Recently, the automotive industry has used simulation programs much more often than experimental research. Computer simulations are more and more often used due to the repeatability of simulation conditions and the possibility of making modifications in simulation objects. Experimental and simulation studies carried out are aimed at developing a model of a simulation dummy adapted to both frontal and rear crash tests, taking into account changes in the moment of resistance in individual joints. The main purpose of the article is to reproduce a real crash test at a low speed of 20 km/h in a simulation program. For this purpose, a series of experimental crash tests with the participation of volunteers was carried out, and then a crash test with a dummy was simulated in the MSC ADAMS program. The experimental studies involved 100 volunteers who were divided into three percentile groups (C5, C50, C95). With the help of force sensors and a high-speed camera, crash tests of volunteers were recorded. The collected data from the force sensors made it possible to map the force in the seat belts. For low-speed crash tests, the displacement and acceleration of individual body parts of the dummy and volunteers can be measured using vision systems. The article identified head displacements of volunteers in the TEMA program based on a video analysis of a crash test film with a frequency of up to 2500 frames per second. The displacement of the simulation dummy’s head in the MSC ADAMS program in the considered crash time interval from 0.0 to 0.4 s for all three percentile groups coincided with the head displacement of the volunteers during the experimental crash test.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference51 articles.

1. Overview and analysis of dummies used for crash tests;Jurecki;Zesz. Nauk./Akad. Morska Szczec.,2013

2. Influence of impact angle and humidity on TB11 virtual crash tests for SP-05/2 road safety barrier;Nycz;Arch. Motoryz.,2016

3. Sances, A., Friedman, K., Gaston, F., and Bish, J. (1999, January 13–16). Serious injury in rear vehicular impacts. Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society, Atlanta, GA, USA.

4. Pike, J. (2011). Head Injury Biomechanics: Volume 1 the Skull, SAE.

5. Biomechanics of 4-point seat belt systems in farside impacts;Rouhana;Stapp Car Crash J.,2006

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3