Dual-Band Wide-Angle Reflective Circular Polarization Converter with Orthogonal Polarization Modes

Author:

Zhang BianmeiORCID,Zhu Chenghui,Zhang Ran,Yang Xiaofan,Wang Ye,Liu XiaomingORCID

Abstract

Herein a dual-band wide-angle reflective circular polarization converter, based on a metasurface was developed. The unit cell is composed of a split square ring and a nested square patch. The split square ring plays the role of creating polarization conversion. The square patch is useful for improving the quality of axial ratio. It was verified that the structure could transform the x-polarized incident wave into left-hand circular polarization in the lower frequency band, and to right-hand circular polarization in the higher frequency band. For y-polarized incidence, the transformation has orthogonal modes to that for x-polarized incidence. Moreover, the 3 dB axial ratio takes place in the ranges of 8.42–12.32 GHz and 18.74–29.73 GHz, corresponding to a relative bandwidth of 37.61%, and 45.35%, respectively. In addition, the polarization conversion efficiency is greater than 99% in the ranges of 8.65–11.83 GHz and 19.55–29.36 GHz. Furthermore, for oblique incidence, the axial ratio remains stable, even at 50° incidence, for the lower frequency band. Lastly, a prototype is fabricated and measured for experimental verification. The measured and simulated results were in good agreement. Compared with other designs in the literature, the proposed converter operates with good performance in dual-band, with high-efficiency, and with angular stability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui province

Natural Science Research Project for Universities in Anhui Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3