Proposing UGV and UAV Systems for 3D Mapping of Orchard Environments

Author:

Tagarakis Aristotelis C.ORCID,Filippou Evangelia,Kalaitzidis Damianos,Benos Lefteris,Busato Patrizia,Bochtis DionysisORCID

Abstract

During the last decades, consumer-grade RGB-D (red green blue-depth) cameras have gained popularity for several applications in agricultural environments. Interestingly, these cameras are used for spatial mapping that can serve for robot localization and navigation. Mapping the environment for targeted robotic applications in agricultural fields is a particularly challenging task, owing to the high spatial and temporal variability, the possible unfavorable light conditions, and the unpredictable nature of these environments. The aim of the present study was to investigate the use of RGB-D cameras and unmanned ground vehicle (UGV) for autonomously mapping the environment of commercial orchards as well as providing information about the tree height and canopy volume. The results from the ground-based mapping system were compared with the three-dimensional (3D) orthomosaics acquired by an unmanned aerial vehicle (UAV). Overall, both sensing methods led to similar height measurements, while the tree volume was more accurately calculated by RGB-D cameras, as the 3D point cloud captured by the ground system was far more detailed. Finally, fusion of the two datasets provided the most precise representation of the trees.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Yield estimation and health assessment of temperate fruits: A modular framework;Engineering Applications of Artificial Intelligence;2024-10

2. Computer vision in smart agriculture and precision farming: Techniques and applications;Artificial Intelligence in Agriculture;2024-09

3. Sensors, systems and algorithms of 3D reconstruction for smart agriculture and precision farming: A review;Computers and Electronics in Agriculture;2024-09

4. Human–Robot Interaction through Dynamic Movement Recognition for Agricultural Environments;AgriEngineering;2024-08-01

5. Edge Computing and Robotic Applications in Modern Agriculture;2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3