Towards Stabilized Few-Shot Object Detection with Less Forgetting via Sample Normalization

Author:

Ren Yang1,Yang Menglong1,Han Yanqiao1,Li Weizheng1

Affiliation:

1. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610207, China

Abstract

Few-shot object detection is a challenging task aimed at recognizing novel classes and localizing with limited labeled data. Although substantial achievements have been obtained, existing methods mostly struggle with forgetting and lack stability across various few-shot training samples. In this paper, we reveal two gaps affecting meta-knowledge transfer, leading to unstable performance and forgetting in meta-learning-based frameworks. To this end, we propose sample normalization, a simple yet effective method that enhances performance stability and decreases forgetting. Additionally, we apply Z-score normalization to mitigate the hubness problem in high-dimensional feature space. Experimental results on the PASCAL VOC data set demonstrate that our approach outperforms existing methods in both accuracy and stability, achieving up to +4.4 mAP@0.5 and +5.3 mAR in a single run, with +4.8 mAP@0.5 and +5.1 mAR over 10 random experiments on average. Furthermore, our method alleviates the drop in performance of base classes. The code will be released to facilitate future research.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference53 articles.

1. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C.L. (2014, January 6–12). Microsoft coco: Common objects in context. Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland. Proceedings, Part V 13.

2. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., and Zisserman, A. (2007, April 07). The PASCAL Visual Object Classes Challenge 2007 (VOC2007). Available online: http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.

3. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., and Zisserman, A. (2012, February 20). The PASCAL Visual Object Classes Challenge 2012 (VOC2012). Available online: http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

4. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016, January 27–30). You only look once: Unified, real-time object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.

5. Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3