A Coupled CFD-DEM Model for Resolved Simulation of Filter Cake Formation during Solid-Liquid Separation

Author:

Puderbach VanessaORCID,Schmidt Kilian,Antonyuk SergiyORCID

Abstract

In cake filtration processes, where particles in a suspension are separated by forming a filter cake on the filter medium, the resistances of filter cake and filter medium cause a specific pressure drop which consequently defines the process energy effort. The micromechanics of the filter cake formation (interactions between particles, fluid, other particles and filter medium) must be considered to describe pore clogging, filter cake growth and consolidation correctly. A precise 3D modeling approach to describe these effects is the resolved coupling of the Computational Fluid Dynamics with the Discrete Element Method (CFD-DEM). This work focuses on the development and validation of a CFD-DEM model, which is capable to predict the filter cake formation during solid-liquid separation accurately. The model uses the Lattice-Boltzmann Method (LBM) to directly solve the flow equations in the CFD part of the coupling and the DEM for the calculation of particle interactions. The developed model enables the 4-way coupling to consider particle-fluid and particle-particle interactions. The results of this work are presented in two steps. First, the developed model is validated with an empirical model of the single particle settling velocity in the transition regime of the fluid-particle flow. The model is also enhanced with additional particles to determine the particle-particle influence. Second, the separation of silica glass particles from water in a pressurized housing at constant pressure is experimentally investigated. The measured filter cake, filter medium and interference resistances are in a good agreement with the results of the 3D simulations, demonstrating the applicability of the resolved CFD-DEM coupling for analyzing and optimizing cake filtration processes.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3