Abstract
The current era is notably characterized by the major advances in communication technologies. The increased connectivity has been transformative in terrestrial, space, and undersea applications. Nonetheless, the water medium imposes unique constraints on the signals that can be pursued for establishing wireless links. While numerous studies have been dedicated to tackling the challenges for underwater communication, little attention has been paid to effectively interfacing the underwater networks to remote entities. Particularly it has been conventionally assumed that a surface node will be deployed to act as a relay using acoustic links for underwater nodes and radio links for air-based communication. Yet, such an assumption could be, in fact, a hindrance in practice. The paper discusses alternative means by allowing communication across the air–water interface. Specifically, the optoacoustic effect, also referred to as photoacoustic effect, is being exploited as a means for achieving connectivity between underwater and airborne nodes. The paper provides background, discusses technical challenges, and summarizes progress. Open research problems are also highlighted.
Funder
National Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献