Optimization of Recharge Schemes for Deep Excavation in the Confined Water-Rich Stratum

Author:

Wu Bo12,Zhang Ke1,Meng Guowang1,Suo Xiao1

Affiliation:

1. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China

2. School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China

Abstract

With the excavation of a metro station in a confined water-rich stratum as our background, the sensitivity of four typical recharge parameters is analyzed by using numerical simulation. Based on the orthogonal analysis method, an optimal recharge scheme was obtained. The results show that the main influential factors of ground settlement and groundwater recovery are recharge pressure and recharge depth. The main influential factor of retaining structure deformation and influence radius of recharge is the distance between the recharge wells and the foundation pit. For the groundwater recharging of a deep excavation in the water-rich confined area of Jinan, China, the optimal effect can be achieved when setting recharge wells with a depth of 50 m arranged in a line with a spacing of 10 m at a horizontal distance of 20 m away from the retaining wall and recharge pressure is 40 kPa. With the same construction difficulty, the maximum settlement in optimized scheme decreased 71.19%, the flux of groundwater recovery increased 11.96%, the maximum horizontal displacement of the wall decreased 15.61%, and the influence radius of recharge enlarged 8.62% compared to original scheme.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3