Affiliation:
1. College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
2. Campo Experimental Valle del Guadiana, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Durango 34170, Mexico
3. Research Institute of Fast-Growing Trees, Chinese Academy of Forestry (CAF), Zhanjiang 524022, China
Abstract
Understanding the effects of land use on soil structure and nutrients is important for soil and water conservation in an ecologically fragile zone. This study was carried out to examine the variability of physicochemical properties in three different land use types: abandoned land (AL), eucalyptus plantation (EP), and road lawn (RL) sites at soil depths of 0–10 and 10–20 cm in the Leizhou Peninsula, a tropical coastal ecologically fragile zone of South China. Soil physicochemical property patterns exhibited extremely significant differences among the three land uses (p < 0.001) at both soil depths. Soil nutrients, natural water content, and total porosity, from high to low, in the different land use types were RL, AL, and EP, while the bulk density, from high to low, was EP, AL, and RL. Soil total nitrogen, total phosphorus, total potassium, available potassium, exchangeable calcium, exchangeable magnesium, and natural water content exhibited significant differences (p < 0.05) among the three land use types at soil depths of 0–10 and 10–20 cm, while no significant changes were detected regarding soil organic carbon, available phosphorus, and total porosity. The correlation between physical and chemical properties at the 10–20 cm depth (R = 0.97, p < 0.001) was closer and more significant than that at the 0–10 cm depth (R = 0.95, p < 0.01). Overuse of land (EP) without a rest in the ecologically fragile zone leads to soil erosion and compaction. Compared with natural restoration (abandoned land), artificial restoration (road lawn) can improve soil nutrient and water status more quickly, but cannot modify the soil organic carbon and porosity in the short term.
Funder
Forestry Technology Innovation Project of Guangdong Province
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献