Dynamic Compilation for Transprecision Applications on Heterogeneous Platform

Author:

Dumas JulieORCID,Charles Henri-PierreORCID,Mambu KévinORCID,Kooli Maha

Abstract

This article describes a software environment called HybroGen, which helps to experiment binary code generation at run time. As computing architectures are getting more complex, the application performance is becoming data-dependent. The proposed experimental platform is helpful in programming applications that can be reconfigured at run time in order to be adapted for a new data environment. The HybroGen platform is adapted to heterogeneous architectures and can generate instructions for different targets. This platform allows to go farther than classical JIT compilation in many directions: the code generator is smaller by three orders of magnitude and faster by three orders of magnitude, compared to JIT (Just-In-Time) platforms, and allows making code transformation that is impossible in traditional compilation schemes, such as code generation for non von Neumann accelerators or dynamic code transformations for transprecision. The latter is illustrated in a code example: the square root with Newton’s algorithm. We also illustrate the proposed HybroGen platform with two other examples: a multiplication with a specialization on a value determined at run time, and a conversion of degrees Celsius to degrees Fahrenheit. This article presents a proof of concept of the proposed HybroGen platform in terms of its functionalities, and demonstrates the working status.

Funder

H2020 Future and Emerging Technologies

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Instruction Set Design Methodology for In-Memory Computing through QEMU-based System Emulator;2021 IEEE International Workshop on Rapid System Prototyping (RSP);2021-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3