Design of In-Memory Parallel-Prefix Adders

Author:

Reuben JohnORCID

Abstract

Computational methods in memory array are being researched in many emerging memory technologies to conquer the ‘von Neumann bottleneck’. Resistive RAM (ReRAM) is a non-volatile memory, which supports Boolean logic operation, and adders can be implemented as a sequence of Boolean operations in the memory. While many in-memory adders have recently been proposed, their latency is exorbitant for increasing bit-width (O(n)). Decades of research in computer arithmetic have proven parallel-prefix technique to be the fastest addition technique in conventional CMOS-based binary adders. This work endeavors to move parallel-prefix addition to the memory array to significantly minimize the latency of in-memory addition. Majority logic was chosen as the fundamental logic primitive and parallel-prefix adders synthesized in majority logic were mapped to the memory array using the proposed algorithm. The proposed algorithm can be used to map any parallel-prefix adder to a memory array and mapping is performed in such a way that the latency of addition is minimized. The proposed algorithm enables addition in O(log(n)) latency in the memory array.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3