Abstract
The use of Light Amplification by Stimulated Emission of Radiation (i.e., LASERs or lasers) by the U.S. Department of Defense is not new and includes laser weapons guidance, laser-aided measurements, even lasers as weapons (e.g., Airborne Laser). Lasers in support of telecommunications is also not new. The use of laser light in fiber optics shattered thoughts on communications bandwidth and throughput. Even the use of lasers in space is no longer new. Lasers are being used for satellite-to-satellite crosslinking. Laser communication can transmit orders-of-magnitude more data using orders-of-magnitude less power and can do so with minimal risk of exposure to the sending and receiving terminals. What is new is using lasers as the uplink and downlink between the terrestrial segment and the space segment of satellite systems. More so, the use of lasers to transmit and receive data between moving terrestrial segments (e.g., ships at sea, airplanes in flight) and geosynchronous satellites is burgeoning. This manuscript examines the technological maturation of employing lasers as the signal carrier for satellite communications linking terrestrial and space systems. The purpose of the manuscript is to develop key performance parameters (KPPs) to inform U.S. Department of Defense initial capabilities documents (ICDs) for near-future satellite acquisition and development. By appreciating the history and technological challenges of employing lasers rather than traditional radio frequency sources for satellite uplink and downlink signal carrier, this manuscript recommends ways for the U.S. Department of Defense to employ lasers to transmit and receive high bandwidth, large-throughput data from moving platforms that need to retain low probabilities of detection, intercept, and exploitation (e.g., carrier battle group transiting to a hostile area of operations, unmanned aerial vehicle collecting over adversary areas). The manuscript also intends to identify commercial sector early-adopter fields and those fields likely to adapt to laser employment for transmission and receipt.
Reference148 articles.
1. Space Warfare: Strategy. Principles and Policy;Klein,2006
2. Transformational Satellite (TSAT) Communications Systems: Falling Short on Delivering Advanced Capabilities and Bandwidth to Ground-Based Users. Air University Press, Maxwell Air Force Base
https://www.semanticscholar.org/paper/Transformational-Satellite-(TSAT)-Communications-on-McKinney/9b46a7134f56c1605ed9aed842ed396b0453084b
3. Laser Technology in Photonic Applications for Space
4. Insights of the Qualified ExoMars Laser and Mechanical Considerations of Its Assembly Process