Abstract
In Airborne Light Detection and Ranging (LiDAR) data acquisition practice, discrepancies exist between adjacent strips even though careful system calibrations have been performed. A strip adjustment method using planar features acquired by the Minimum Hausdorff Distance (MHD) is proposed to eliminate these discrepancies. First, semi-suppressed fuzzy C-means and restricted region growing algorithms are used to extract buildings. Second, a binary image is generated from the minimum bounding rectangle that covers overlapping regions. Then, connected components labeling algorithm is applied to process the binary image to extract individual buildings. After that, building matching is performed based on MHD. Third, a coarse-to-fine approach is used to segment building roof planes. Then, plane matching is conducted under the constraints of MHD and normal vectors similarity. The last step is the calculation of the parameters based on Euclidean distance minimization between matched planes. Two different types of datasets, one of which was acquired by a dual-channel LiDAR system Trimble AX80, were selected to verify the proposed method. Experimental results show that the corresponding planar features that meet adjustment requirements can be successfully detected without any manual operations or auxiliary data or transformation of raw data, while the discrepancies between strips can be effectively eliminated. Although adjustment results of the proposed method slightly outperform the comparison alternative, the proposed method also has the advantage of processing the adjustment in a more automatic manner than the comparison method.
Funder
Natural Science Foundation of Hubei Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献