Strip Adjustment of Airborne LiDAR Data in Urban Scenes Using Planar Features by the Minimum Hausdorff Distance

Author:

Liu ,Ma ,Zhang ,Cai ,Ma

Abstract

In Airborne Light Detection and Ranging (LiDAR) data acquisition practice, discrepancies exist between adjacent strips even though careful system calibrations have been performed. A strip adjustment method using planar features acquired by the Minimum Hausdorff Distance (MHD) is proposed to eliminate these discrepancies. First, semi-suppressed fuzzy C-means and restricted region growing algorithms are used to extract buildings. Second, a binary image is generated from the minimum bounding rectangle that covers overlapping regions. Then, connected components labeling algorithm is applied to process the binary image to extract individual buildings. After that, building matching is performed based on MHD. Third, a coarse-to-fine approach is used to segment building roof planes. Then, plane matching is conducted under the constraints of MHD and normal vectors similarity. The last step is the calculation of the parameters based on Euclidean distance minimization between matched planes. Two different types of datasets, one of which was acquired by a dual-channel LiDAR system Trimble AX80, were selected to verify the proposed method. Experimental results show that the corresponding planar features that meet adjustment requirements can be successfully detected without any manual operations or auxiliary data or transformation of raw data, while the discrepancies between strips can be effectively eliminated. Although adjustment results of the proposed method slightly outperform the comparison alternative, the proposed method also has the advantage of processing the adjustment in a more automatic manner than the comparison method.

Funder

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3