Waste to Wealth: Value Recovery from Bakery Wastes

Author:

Govindaraju Mugilan,Sathasivam Kathiresan V.,Marimuthu Kasi

Abstract

Compost is considered a soil-amending product that can be used for soil improvement and to increase the productivity of organic vegetable crops. Composting can be an alternative solution for solid waste management. In this research, the efficacy of various bakery wastes and bulking agents, such as cow dung, to produce compost were studied. The bin composting method was applied in this research. Commercial effective microorganism was used to study its effectiveness in composting bakery waste compared to common ways of composting. Six compost trials were designed by using different ratios of feedstocks such as creamy and non-creamy bakery waste, paper boxes, eggshells, cow dung, dry leaves, and effective microorganism (EM). For the assessment of the maturity, stability, and quality of the compost, various physical and chemical parameters were routinely monitored, including temperature, pH, electrical conductivity (EC), moisture content, water holding capacity (WHC), phytotoxicity and color intensity of water extract, total organic carbon (TOC), total nitrogen (N), phosphorus (P), potassium (K), and C/N ratio. All six compost trials reached the four important phases of temperature, which are the mesophilic phase, thermophilic phase, second mesophilic phase (cooling phase), and maturation phase. The pH, EC, N, P, and K of every compost trial complied with standard compost requirements. Phytotoxicity study proved that all the compost trials were phytotoxic-free when tested with Phaseolus vulgaris (green bean). The water holding capacity of all six trials ranged from 2.18 to 4.30 g water/g dry material. Various compost trials achieved C/N ratios ranging from 12.01 to 14.48, which is considered within the satisfactory limit. The results showed that bakery waste can be turned into compost, with its quality complying with standard requirement.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3