Dispatch Optimization Scheme for High Renewable Energy Penetration Using an Artificial Intelligence Model

Author:

Alharbi Mahmood1ORCID,Altarjami Ibrahim1ORCID

Affiliation:

1. Department of Electrical Engineering, Taibah University, Madinah 42353, Saudi Arabia

Abstract

The scientific community widely recognizes that the broad use of renewable energy sources in clean energy systems will become a substantial and common trend in the next decades. The most urgent matter that has to be addressed is how to enhance the amount of renewable energy integration into the system while ensuring system stability in the presence of sudden fluctuations in generation and system faults. This study introduces a methodology that may be applied to any power system to optimize the level of renewable energy sources (RESs) integration. The methodology relies on using a trilayered neural network (TNN), which is a model utilized in the field of artificial intelligence. In order to apply and analyze the outcomes of the proposed optimization technique, the Kundur power system is employed as a case study. The objective of this methodology is to enhance the operation dispatches of a power system to attain a higher level of renewable energy output, specifically photovoltaic (PV) generation, while maintaining the stability of the system. This would enhance the stakeholders’ or utility providers’ capacity to make well-informed judgments on operation dispatch processes. The findings of this study suggest that it is generally recommended to raise the dispatchable power values for the generators in the loading region and lower the dispatchable power values for the generators in the generating area.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3