ANLPT: Self-Adaptive and Non-Local Patch-Tensor Model for Infrared Small Target Detection

Author:

Zhang Zhao1,Ding Cheng1,Gao Zhisheng1ORCID,Xie Chunzhi1

Affiliation:

1. School of Computer and Software Engineering, Xihua University, Chengdu 610039, China

Abstract

Infrared small target detection is widely used for early warning, aircraft monitoring, ship monitoring, and so on, which requires the small target and its background to be represented and modeled effectively to achieve their complete separation. Low-rank sparse decomposition based on the structural features of infrared images has attracted much attention among many algorithms because of its good interpretability. Based on our study, we found some shortcomings in existing baseline methods, such as redundancy of constructing tensors and fixed compromising factors. A self-adaptive low-rank sparse tensor decomposition model for infrared dim small target detection is proposed in this paper. In this model, the entropy of image block is used for fast matching of non-local similar blocks to construct a better sparse tensor for small targets. An adaptive strategy of low-rank sparse tensor decomposition is proposed for different background environments, which adaptively determines the weight coefficient to achieve effective separation of background and small targets in different background environments. Tensor robust principal component analysis (TRPCA) was applied to achieve low-rank sparse tensor decomposition to reconstruct small targets and their backgrounds separately. Sufficient experiments on the various types data sets show that the proposed method is competitive.

Funder

the Sichuan science and technology program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3