Characterization of Operational Vibrations of Steel-Girder Highway Bridges via LiDAR

Author:

Trias-Blanco Adriana1ORCID,Gong Jie2,Moon Franklin2

Affiliation:

1. Department of Civil and Environmental Engineering 1, Rowan University, Glassboro, NJ 08028, USA

2. Department of Civil and Environmental Engineering, Rutgers University, Piscataway, NJ 08854, USA

Abstract

This research is motivated by the need for rapidly deployable technologies such as wireless, non-contact or remote sensing for evaluating bridges under operating conditions to minimize the data collection time, avoid the disruption of traffic and increase the inspector’s safety. The objective established for this research is to explore the use of remote sensing (e.g., Light Detection and Ranging (LiDAR)) for characterizing the structural vibration of bridges to support and improve bridge assessment practices. To satisfy this objective, a field study was performed on a 12-span steel stringer bridge in the Philadelphia region. This structure was subjected to extensive LiDAR scanning and conventional vibration data collection through the use of accelerometers for validation purposes. The analysis of the data collected in the field revealed LiDAR’s capability for detecting the structure’s vibration. The field data displayed an error for LiDAR vs. accelerometers of between 1.9 and 10 percent. Additionally, numerical modeling was performed on MATLAB to allow for a better understanding of the interaction between the scanner and the structure. The numerical model presents a vibrating plate to represent a simply supported single-span bridge and a terrestrial LiDAR sensor located under the plate which scans while it is vibrating constantly without attenuation. Finally, a set of recommendations were established for the use of LiDAR scanning to evaluate the structure’s frequency of vibration.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3